fitDF

Release 0.1

Contents:

1	Installation	1
2	Example usage	3
3	Indices and tables	,

			- 4
\cap \square	AP		2
OH	\neg	$I \sqcup I$	1

Installation

To install, clone the repository and run

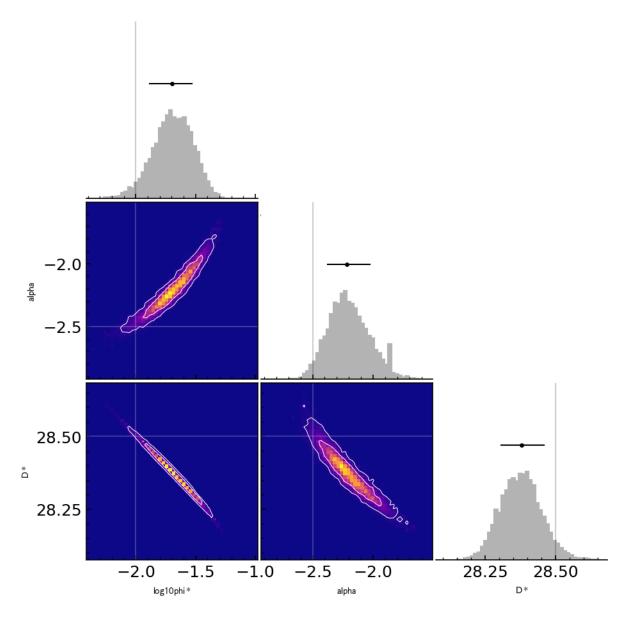
python setup.py install

in your desired environment.

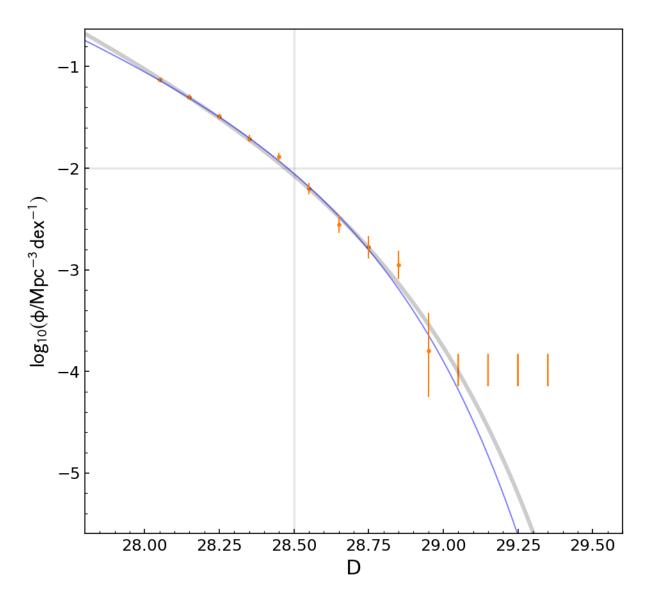
CHAPTER 2

Example usage

In this tutorial we'll demonstrate using fitDF on a galaxy luminosity function. First, we can generate some fake observational data (counts per luminosity bin) by running


```
python generate_fake_observations.py
```

This produces two files, fake_observations.json and input_parameters.json, which contain the counts and the chosen input parameters, respectively.


Now we can run our fit:

```
python example_fit.py
```

this performs MCMC to fit the observations using a single Schechter function model (identical to that used in the data generation). Once the sampling is complete, two plots are produced. triangle.png shows a triangle (corner) plot of the posterior parameter distributions, with the original parameters shown as the horizontal lines on each marginal distribution.

 $\texttt{LF.png} \ shows \ the \ fitted \ luminosity \ function. \ The \ original \ and \ fitted \ functions \ are \ both \ shown, \ as \ well \ as \ the \ original \ data.$

You can experiment with the contents of <code>example_fit.py</code>. For example, try changing the number of samples or burn-in period, or even adjust the prior parameter distributions. <code>example_fit.py</code> can be used as a template for your own projects.

$\mathsf{CHAPTER}\,3$

Indices and tables

- genindex
- modindex
- search